天文学家古怪又有趣的故事,精彩到忍不住一

夜读·开卷有益

宇宙、星空、银河系……这些词对我们来说既熟悉又陌生,因充满未知而神秘梦幻。

“我们为什么要研究宇宙?我们为什么要仰望星空,为什么要提出内心的疑惑,满世界建这么多望远镜,到地球的极限之地寻找答案?我们为什么要观星?”

每个人或许都曾思考过这些问题,而天文学家们的答案是:“原因无他,只因我们必须这么做。在这颗小小的星球上,有一团微小却无法扑灭的无形之火,在渺小的人类心中燃烧着,驱使我们在漫漫宇宙中上下求索。”

在《最后的观星人:天文探险家的不朽故事》一书中,美国华盛顿大学天文学教授艾米莉·莱维斯克用风趣幽默的笔法,记录下自己以及位同事朋友古怪又有趣的观星冒险故事,精彩到忍不住一口气读完!

对于那些梦想着仰望星空的人来说,一个又一个跌宕起伏的黑暗夜晚里,充满着不可言说的惊险和浪漫。

今天的精彩文章摘自光尘文化出品的《最后的观星人:天文探险家的不朽故事》,对原文有删节。

最后的观星人

(节选)

观星是一种简单原始的人类活动,几乎每个人都曾抬头仰望星空。无论是在繁忙的城市街头,昂首注视被光照污染的夜空,还是在地球上某个偏远的犄角旮旯,浑然忘我地凝视着划过天边的流星,或者只是安静地站在浩瀚的苍穹之下,用心灵去感应地球大气层外的广袤宇宙,神秘美丽的星空总是叫人心驰神往。

你很难找到一个不曾欣赏过星空照片的人,世上最好的望远镜拍下了无数动人心魄的太空景象,蕴藏着宇宙的无穷奥秘:群星璀璨的全天画卷、如风车般盘旋的旋涡星系、如彩虹般绚烂的气体云。照片背后的故事却鲜为人知,比如它们从何而来,为什么要拍它们,怎么拍到的,谁又从中窥见了宇宙的奥秘?

天文研究听上去是一份既浪漫又天真的工作,从事它的人如独角兽般稀有:地球上有75亿人,只有不到5万人是专业的天文学家。大多数普通人从未当面见过专业的天文学家,更不用说去了解天文学家的工作细节了。

图/unsplash

01

顶级望远镜,“稀有而抢手”

人们对天文学家最大的误解也许是我们整天都围着望远镜转,每天晚上都会像夜行动物一样,坐在望远镜前工作。现实却是另一番景象。

望远镜如同存量稀少的珍贵纸币,能分给天文学家使用的时间少之又少。我们坐在与天体相距数十亿英里远的地方,根本不可能把研究对象带到实验室里,里里外外检查个遍。

大多数天文学家能做的就是远观,哪怕远远地观望也是一种奢望,只有世界上最好的天文台才能做到,但是这些天文台很抢手:天文学家可能已经算是稀有动物,天文台可就更稀有了,全世界只有不到一百台可用于天文学研究的顶级望远镜。天文学家要翘首以盼好几个月,才有机会分配到一台望远镜,而且往往只会分到一个晚上,只够观测几颗恒星或星系。

一个成功的观测之夜,能让我们第一时间捕捉到某些天体发出的光。它们的“碎片”光子穿过整个宇宙,最终到达望远镜,落入我们眼中,供天文学家研究。有了数据以后,我们会重返白天的办公室,坐在办公桌前,埋首于电脑,对着观察了数周乃至数月的东西,苦苦思索着隐藏在它们背后的基本原理,接着带上下一个问题,再次起程前往天文台,运气好的话还能申请到一台望远镜。

图/unsplash

过去60年,天文观测随着科技和数字革命一起发展,发生了翻天覆地的变化。我们今天的观测方法与半个世纪以前大不相同:今天的数据以数字化形式存储,而不是印在易碎的玻璃底片上;天文学家可以远程操控望远镜,或让机器人来操作,不必亲自跑到圆顶室操作;多亏了互联网,即使身处世界最偏僻的角落,天文学家也可以上网下载参考资料,与同事通过邮件实时交流,上YouTube网站观看视频,打发乌云密布的夜晚。

不过,有些东西却从未变过。当天色逐渐暗下来,望远镜抬起头来对准天空,观察室的空气中开始流动着分秒必争的紧迫感。从宇宙深处远道而来的光线从来不会为谁驻留,想要捕捉它们的科学家必须争分夺秒。

02

“嘿,是彩色的啊!它好红啊!”

我虽然懂得望远镜口径更大,成像质量更好的道理,但是直到有机会亲自用世界一流的望远镜去观测天体,我才对口径大的好处有了切身体会。

关于现代天文学最常见的误解之一是,大多数天文学家仍然会透过望远镜去观测天体。实际上,“透过”世界上最好的望远镜——将眼睛凑到小小的目镜前——去观测天体的机会,比你想象的要少得多。某些世界上最好的望远镜甚至没有目镜,我们依赖的是相机和其他数字形式,来记录它们指向的天体。话虽如此,透过望远镜观察天体的机会偶尔还是有的。

射电望远镜/unsplash

有一天晚上,在智利的拉斯坎帕纳斯天文台,我和几个同事没有观测任务,闲来无事,决定在山上过夜。一位望远镜操作员告诉我们,当晚山上最小的那架望远镜是闲着的,如果我们感兴趣的话,他很乐意在望远镜上装一个目镜,让我们看星星。所有人满怀欣喜地同意了,太阳一下山就往望远镜所在地走去。

这台望远镜口径1米,按今天的标准来看,确实是只小虾米,但它仍然让大多数家用望远镜相形见绌,比我亲眼“见过”的任何一台望远镜都要大得多。小时候,我家后院有一台8英寸的小望远镜,我很喜欢它带给我的视野,但也知道透过它看到的星空,不如电视或杂志上的壮观。在这台小望远镜的视野中,彩色的气体泡沫变成暗淡的白色圆圈,斑斓的星云变成浑浊的白点,土星尤其引人注目,不是因为它在目镜中是彩色的,而是因为它的星环轮廓清晰可见。真正令我兴奋的不是镜中美丽的物像,而是那些远道而来的小星光。一想到那些闪烁着微光的模糊斑点,距离我有数千光年之远,我的心中就会涌上难以言喻的感动。

我站在轮流使用望远镜的队伍里,等待着第一次凑到1米口径望远镜的目镜上观看星空。虽然不知道会看到什么,不过从前面几位天文学家的反应来看,应该很值得期待。

“哇!”

“哦!”

“嘿,是彩色的啊!它好红啊!”

我们听起来不像是严肃呆板的科学家,更像是兴奋不已的业余观星者。虽然每天跟电子数据打交道,但都是因为在某个瞬间爱上了宇宙,才会选择成为天文学家。这意味着我们还很小的时候,就已经开始眨巴着好奇的眼睛,用小小的家用望远镜探索星空。研究级望远镜带来的景象,刷新了每个人的视觉观感。

轮到我看的时候,望远镜指向了一颗叫“海山二”(EtaCarinae)的恒星,正是我喜欢的那种:神秘莫测,质量是太阳的几十倍,似乎即将走到生命的尽头。早在19世纪初,它就因为我们至今未知的原因爆发过一次,将一部分物质抛射向太空,形成奇特的哑铃状外观——巨大的气体云像两团气泡粘在一起,中央包裹着一颗明亮的恒星。在爆发时期,人类靠肉眼就能看到它,虽然只有一个小针眼那么大。

凑到目镜上后,我惊喜地尖叫了一声,完全没有一丝专业研究员应有的矜持。我可以看到那两个气泡!我可以看到,它们有一点小透明,像一层薄纱包裹着一颗恒星。在我眼中,那颗恒星透着红色的光,是外层氢气燃烧产生的效果。当我盯着它看时,它一动不动地挂在漆黑的天幕中,周围散落着几颗比它暗淡的星辰。

“海山二”(EtaCarinae)/图源:NASA

虽然我早已看过很多海山二的照片,但那些都是以数字图像或潦草公式呈现的海山二。能够亲眼看到宇宙中的本尊,比我想象的还要令人激动。我不知道1米望远镜竟然这么厉害!

我们从一个天体跳到另一个天体,欣赏着别的恒星、星团及星云,努力将每个看到的壮观景象镌刻在脑海中。即使是在专业的天文学家眼里,观星也是一项永不过时的消遣。

03

“咔嚓”一声脆响……

通过目镜观测天体可能很浪漫,但并不那么科学。我们看到的星像必须以某种手段准确地记录和保存下来,而这种手段也在与时俱进。

在摄影技术普及之前,目测和手绘是收集天文数据的最佳手段。太阳天文学至今仍引用理查德·卡灵顿年描绘的生动真实的太阳黑子图,我的一个研究生甚至追溯到了人类第一个有案可稽的天文参考资料,一幅蚀刻在17世纪地球仪上的恒星爆发图。到20世纪初黑尔望远镜问世时,我们已经告别目镜或手绘的老方法,转身拥抱更为现代化的技术:照相底片。

在大多数天文台,照相底片代表了当时最先进的成像技术。它是一块正方形的玻璃片,向市场订购后(柯达是一大供应商),运到天文台,再装进望远镜的相机里。这种玻璃片基涂有特殊的卤化银乳剂,遇光会起光敏反应。曝光过程中,乳剂层吸收的光子越多,意味着成像越黑;经显像处理后,底片上显现灰度反转的图像,明的是夜空,暗的是星辰。

图/unsplash

这些玻璃底片的邪恶之处隐藏在细节里。虽然柯达可以生产多种尺寸的底片,但是它们被运到各大天文台后,通常还要根据馆内相机的实际大小再做裁切。加工后,它们大小不等,大的有17英寸(约43厘米),用于大视场巡天望远镜,小的可能只有手心那么大,供深入观测某一小块天区的大型太空望远镜或特殊相机使用。

它们对光线很敏感,只能在伸手不见五指的房间里加工,类似于摄影师冲洗胶片的暗房。天文学家会小心翼翼地取下一块柯达底片,接着拿起梯形切割机,在黑暗中摸索,凭感觉将它裁小。直到今天,许多几十年前用过玻璃底片的观测者依然能够熟练地模仿在暗房里切割玻璃的动作,而且几乎所有人都会闭着眼睛做。

这个过程并不总是完美无缺。有经验的观测者可以通过切割的声音,判断这一刀下去的切口是干净平整,还是参差不齐,缺了一个口子。有人会在切到一半时,听到“咔嚓”一声脆响,大声向学生或助手喊“快开灯”,等灯“啪”地亮了,看到的是一块切碎的玻璃,一只血淋淋的手。这种事发生过不止一次。

在那个年代有一位才华横溢、备受尊崇的天文学家,劳伦斯·阿勒,集众多优点于一身,唯独缺乏一双巧手。某一天吃午饭时,他兴冲冲地向同事展示一块完工的玻璃,上面印着一团绚丽的行星状星云。当他将玻璃传给同餐桌的人看时,所有人都无比虔诚地欣赏它,对那壮观的景象赞叹不绝,最后只有一个人说出了大家心中的困惑:他们手中这块玻璃形状古怪,而且缺了一个角,边缘全是毛刺,不似大多数玻璃底片那般方正。这是怎么一回事?阿勒说,他怎么也用不来那该死的切割机,便急中生智,拿起一块完整的柯达底片,往暗房里的台子上使劲一砸,摸到一块大小合意的碎片,就凑合着用了。

天文学家们会根据自己想要的波长,将涂有感光层的玻璃底片放进烤箱里烘烤,放进冰箱里冰冻,放在光线底下短暂曝光,或者浸泡在各种溶液中。大多数底片只要浸过蒸馏水就会有很好的效果,但是在这场提高感光速度的竞赛中,观测者们从不满足于现状,永远都在创新谋变,以身“犯险”。

图/unsplash

红外底片尤具挑战性。据乔治·沃勒斯坦回忆,他曾用氨水浸泡红外底片,说是可以将光敏度提高6倍,而用蒸馏水只能提高3倍。当然,这种方法的缺点是,你要将自己单独锁在放满氨水的暗房里。每当用氨水处理底片时,乔治会找人守在门外,嘱咐他们:“如果我15分钟后还没出来,请你们务必进来将我拖走。”

后来,氨水被淘汰了,取而代之的是更有效的化学处理方法:纯氢。这是一次巨大的技术飞跃,伴随着更大的安全隐患。为此,帕洛玛山天文台单独建了一个特殊的房间,配备了无火花开关,并撤除了一切可能引发火灾的物品。

制备完成后,观测者需要将底片装入相机的暗盒内,依然要在黑暗中进行,关键是一定要装对方向,将乳剂层朝向天空,万一装反了,当晚就白观测了。观测者之间流传着这样一个妙招儿,想知道哪一面涂有卤化银,最好的方法是用嘴唇或舌头迅速碰一下玻璃边缘,有点黏的那一面就是了。卤化银的味道略甜,一些天文学家说他们甚至可以尝出不同柯达乳剂之间的差异,聪明的观测者则会舔不含卤化银的那一面。

将底片放入相机可不是一件简单的事。望远镜不是将星光聚集到一个焦点上,而是聚集到一个焦面上,你可以将它想象成一个正方形的平面。在一些望远镜和光学仪器上,这个平面并非完全平坦,而是有点弯曲。如果底片也能相应地弯曲,就能更好地捕捉星光,可惜柯达做的底片不具有能屈能伸的柔性。

面对这些刚度良好的玻璃薄片,许多观测者会将它们切割成精确的大小,用特殊溶液加以浸泡,然后微微地弯折起来,小心翼翼地往相机里放,在心中疯狂乞求它们千万不要断裂。许多人最终会从无数次失败的尝试中学会该用多大的力道弯折它才不会断,但是在达到那个出神入化的境界之前,几乎每个观测者都曾在望远镜前亲眼看着精心制备的底片碎在自己手中,体会到那种肝肠寸断的感觉更悲惨的是,有人甚至曾观测到一半,突然听到底片暗盒中传来一声不祥的啪嚓声。

正所谓好事多磨,准备和装载底片只是观测的前奏。一旦底片放好了,观测者便会将望远镜和圆顶分别旋转就位,对准想要观测的天体。只有在这时,相机才会启动曝光,来自星空的光线倾泻而下,最终抵达底片。

图/unsplash

04

一声响彻云霄的咆哮

尽管底片精度很高,但它不能一并解决所有观测难题,观测的重任依然落在人类天文学家身上。观测者不能装完底片就一走了之。装上底片的相机需要有人操作,望远镜也要有人指引。强大的望远镜能够将天空无限放大,但是由于地球自转,短短几分钟内,它就会产生明显的偏移,原本对准的星星也会逐渐滑出视场。为了始终指向目标观测天区,天文学家必须不断引导望远镜,移动和微调它的视野,让目标天体始终处于视野中心。在装卸底片、开关快门、操控望远镜之间,大多数观测者还得时刻


转载请注明:http://www.aierlanlan.com/rzfs/5538.html

  • 上一篇文章:
  •   
  • 下一篇文章: 没有了