看似不起眼的沙子,富含二氧化硅,而二氧化硅通过高温加热、纯化、过滤等工艺,可从中提取出硅单质,然后经特殊工艺铸造变成纯度极高的块状单晶硅,称作单晶硅棒(CrystalIngot)。单晶硅棒根据用途被切割成0.5mm-1.5mm厚度的薄片,即成为芯片的基本原料,硅晶圆片,这便是“晶圆(Wafer)”。
熔炉重塑:
沙子在高温和足量的碳的共同作用下,会被还原成纯度约98%的冶金硅锭
冶金硅锭:
将冶金级单质硅(金属硅)制成微细粉末,使其与液态氯化氢(HCl)在大约℃发生如下反应
Si+3HCl—→SiHCl3+H2↑
生成透明液体,得到三氯氢硅。将三氯氢硅蒸馏、精制,使其达到尽可能高的纯度。
99.%的纯硅锭:
多晶硅长晶法即长成单晶硅棒法有两种:直拉法(CZ)和浮融法(FZ)。其中CZ法占了约85%。CZ法所以比FZ法更普遍被半导体工业采用,主要在于它的高氧含量提供了晶片强化的优点,另一方面是CZ法比FZ法更容易生产出大尺寸的单晶硅棒。
单晶硅棒:
外径研磨:
指通过研磨除去切片和轮磨所造成的锯痕及表面损伤层,有效改首单品硅片的翘曲度,平坦度与平行度,达到一个抛光过程可以处理的规格。
切片:
指将单晶硅棒切成具有精确几何尺寸的薄品片。厚度在0.8mm以下
抛光:
表面氧化:
氧化过程的作用是在晶圆表面形成保护膜。它可以保护晶圆不受化学杂质影响、避免漏电流进入电路、预防离子植入过程中的扩散以及防止晶圆在刻蚀时滑脱。:
去除杂质和污染物:
热氧化:
将晶圆置于至摄氏度的高温环境下,通过氧气或蒸气在晶圆表面的流动形成二氧化硅(即“氧化物”)层。氧气扩散通过氧化层与硅反应形成不同厚度的氧化层,可以在氧化完成后测量它的厚度。
干法氧化:
使用纯氧产生二氧化硅层,速度慢但氧化层薄而致密
湿法氧化:
需同时使用氧气和高溶解度的水蒸气,其特点是生长速度快但保护层相对较厚且密度较低
涂光刻胶:
又称光致抗蚀剂,是指通过紫外光、电子束、离子束、X射线等的照射或辐射,其溶解度发生变化的耐蚀剂刻薄膜材料。由感光树脂、增感剂和溶剂3种主要成分组成的对光敏感的混合液体。。在光刻工艺过程中,用作抗腐蚀涂层材料。半导体材料在表面加工时,若采用适当的有选择性的光刻胶,可在表面上得到所需的图像。光刻胶按其形成的图像分类有正性、负性两大类。在光刻胶工艺过程中,涂层曝光、显影后,曝光部分被溶解,未曝光部分留下来,该涂层材料为正性光刻胶。如果曝光部分被保留下来,而未曝光被溶解,该涂层材料为负性光刻胶。按曝光光源和辐射源的不同,又分为紫外光刻胶(包括紫外正、负性光刻胶)、深紫外光刻胶、X-射线胶、电子束胶、离子束胶等。光刻胶主要应用于显示面板、集成电路和半导体分立器件等细微图形加工作业。光刻胶生产技术较为复杂,品种规格较多,在电子工业集成电路的制造中,对所使用光刻胶有严格的要求。硅晶圆片晶圆(Wafer)镀铜设计好的电路图通过紫光等,投射在硅晶圆体上刻蚀机将涂有光刻胶硅基底分离出来最终形成电路等离子注入热处理硅晶圆片切割成小块加装底座散热、测试
掩膜照射:
紫外线透过掩膜照射光刻胶,掩膜上印有预先设计好的电路图案,曝光在紫外线下的光刻胶被溶解掉,清除后留下掩膜上图案。
蚀刻:
用化学物质溶掉暴露出来的晶圆,剩下光刻胶保护着不应该腐蚀的部分,蚀刻完成清楚全部光刻胶,露出一个个凹槽。
搀加杂质:
将晶圆中植入离子,生成相应的P、N类半导体。具体工艺是是从硅片上暴露的区域开始,放入化学离子混合液中。这一工艺将改变搀杂区的导电方式,使每个晶体管可以通、断、或携带数据。简单的芯片可以只用一层,但复杂的芯片通常有很多层,这时候将这一流程不断的重复,不同层可通过开启窗口联接起来。这一点类似所层PCB板的制作制作原理。更为复杂的芯片可能需要多个二氧化硅层,这时候通过重复光刻以及上面流程来实现,形成一个立体的结构。
晶圆测试:
经过上面的几道工艺之后,晶圆上就形成了一个个格状的晶粒。通过针测的方式对每个晶粒进行电气特性检测。一般每个芯片的拥有的晶粒数量是庞大的,组织一次针测试模式是非常复杂的过程,这要求了在生产的时候尽量是同等芯片规格构造的型号的大批量的生产。数量越大相对成本就会越低,这也是为什么主流芯片器件造价低的一个因素。
封装:
将制造完成晶圆固定,绑定引脚,按照需求去制作成各种不同的封装形式,这就是同种芯片内核可以有不同的封装形式的原因。比如:DIP、QFP、PLCC、QFN等等。这里主要是由用户的应用习惯、应用环境、市场形式等外围因素来决定的。
测试、包装:
经过上述工艺流程以后,芯片制作就已经全部完成了,这一步骤是将芯片进行测试、剔除不良品,以及包装